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Abstract Background/purpose: Dihydropyrimidine deh-
ydrogenase (DPD) and thymidylate synthase (TS) are
key enzymes for predicting the efficacy of 5-FU in the
treatment of malignant tumors. However, 5-FU is not
commonly commonly chosen for chemotherapeutic
treatment of hepatocellular carcinoma (HCC) in prac-
tice. The aim of this study was to determine the activities
of both DPD and TS in HCCs and corresponding liver
parenchyma and to assess the correlation between the
activities of these enzymes and clinicopathological fea-
tures. The possibility of using 5-FU as a first-choice
chemotherapeutic agent for HCC was also evaluated.
Methods: The study material comprised 33 pairs of
hepatocellular carcinoma and noncancerous liver sam-
ples. The DPD and TS activities were quantified by a
radiometric enzymatic assay and a 5-fluoro-2’-deoxy-
uridine-5’- monophosphate (FAUMP) ligand-binding
assay, respectively. Results: Pathologically invasive
HCCs tended to show higher DPD activity and lower TS
activity with some exceptions. DPD activity was lower in
the HCCs regardless of their clinical features than in the
noncancerous liver parenchyma, whereas TS activity
was generally lower in HCCs except for those with cer-
tain clinical features. HCCs with multiple nodules
showed lower DPD activity and those with a diameter of
more than 5 cm showed lower TS activity. In the non-
cancerous liver parenchyma, a gradual decrease in DPD
activity and an increase in TS activity were associated
with the age of the patient, liver damage and z-factor. Of
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30 HCC samples, 10 exhibited comparatively low DPD
and TS activity, and these could be considered 5-FU-
sensitive HCC. Conclusions: DPD and TS activity may
be affected by the clinicopathological status in both the
HCC and the corresponding liver parenchyma. How-
ever, further investigation is necessary. Some HCC pa-
tients may be good candidates for 5-FU-based
chemotherapy based on measurements of tumor levels of
DPD and TS.
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Introduction

5-Fluorouracil (5-FU) has been used in practice for
more than 30 years, ever since Heidelberger and col-
leagues reported its significance as an antitumor agent
[17]. It is commonly used for the treatment of gastro-
intestinal, breast and head and neck cancers, with rea-
sonable results. Recently, the cytotoxic mechanisms of
5-FU have been clarified and some initial enzymes, such
as dihydropyrimidine dehydrogenase (DPD) and thy-
midylate synthase (TS), have been recognized as key
enzymes in the metabolism of 5-FU. DPD is an initial
and rate-limiting enzyme for the catabolism of 5-FU [I,
3, 5, 14, 34, 40]. On the other hand, TS is an essential
enzyme for DNA synthesis, and is the target enzyme of
5-FU. 5-FU is converted into 5-fluoro-2’-deoxyuridine-
5’-monophosphate (FAUMP), which forms a tight
complex with TS in the presence of the folate cofactor
5,10-methylene tetrahydrofolate (CH,H4PteGlu). This
complex blocks DNA synthesis because the consump-
tion of free TS leads to inhibition of the conversion of
uracil to thymidine. Previous experimental and clinical
studies have shown that low TS activity in cells results in
low DNA replication [10, 23, 38, 39, 41, 42, 44]. Thus,
the activities of DPD and TS within neoplastic cells are a
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crucial determinant of whether 5-FU will be an effective
cytotoxic agent against that tumor [2, 11, 36, 37].

In chemotherapy for hepatocellular carcinoma
(HCC), 5-FU is preferentially used as a major anticancer
agent, without or combined with other chemothera-
peutic drugs. However, a major proportion of HCC
patients do not satisfactorily respond to this agent,
although it is effective in the treatment of some HCC
patients. Therefore, the prediction of 5-FU sensitivity in
each case is important to avoid unnecessary adminis-
tration. Nevertheless, no detailed studies have focused
on both DPD and TS to forecast the therapeutic effi-
ciency of 5-FU against HCC. Moreover, it is surmised
that HCC patients undergoing 5-FU-based chemother-
apy suffer from side effects, typically due to liver dys-
function, because most HCC patients have parenchyma
tissue damage and the liver is the main site of DPD
activity [18].

DPD and/or TS have been evaluated in a number of
studies, but in only a few has the focus been on HCC
and injured liver. DPD activity in the normal liver has
been reported previously [4, 31, 32] and later studies
have shown that DPD activity is lower in HCC than in
normal liver [15, 21]. However, the opposite tendency
has also been reported [19]. TS has also been quantified
in a series of metastases of colorectal cancer [25, 43, 47],
but never in relation to HCC or injured liver. Overall,
the enzyme activity in HCC and injured liver remains
poorly understood.

Although this study is an extension of previously
reported work, it is the first study in which both DPD
and TS have been fully investigated in the same speci-
mens of injured liver and HCC. Furthermore, the cor-
relation between DPD and TS activity and the
clinicopathological features of HCC, and the noncan-
cerous liver parenchyma are discussed, providing evi-
dence to facilitate prediction of sensitivity to 5-FU in
individual HCC patients.

Materials and methods

Materials

The study material comprised 33 pairs of hepatocellular carci-
noma and noncancerous liver samples obtained from patients
undergoing liver surgery at Kyoto University Hospital. Sample
collection was performed according to the guidelines of protocols
approved by the institutional review board. Informed consent was
obtained from all subjects. No treatment was carried out prior to
surgery. Samples of 50 to 400 mg in weight were collected from
the specimen immediately after resection inside the operating
room by a special assistant standing by, and were stored in a deep
freezer (—80°C) without any delay. The nearby liver parenchyma
was carefully excluded when collecting the liver cancer samples. If
several nodules were included in the specimen, the main nodule,
which represented the main tumor, was collected. The remaining
specimen was sent to the Department of Pathology for routine
pathological evaluation. The patients studied included 27 men and
6 women with a mean age of 63.2 years (range 33-84 years;
Table 1).

Table 1 Patient profiles

No. of patients enrolled 33
Male 27
Female 6
Age (years)

Mean 63.2

Range 33-84
Diagnosis

HCC 30

Other 3
Hepatitis virus infection (HBV Ag/HCV Ab)

+ /- 7

—/+ 19

+/+ 1

_/_ 6
TNM stage

I 2

11 13

111 9

IVA 4

IVB 0

Clinicopathological variables

The clinicopathological variables were selected according to the
general rules for the clinical and pathological study of primary liver
cancers: liver damage, TNM stage, histological differentiation,
growth pattern, capsule formation, capsule invasion, septum for-
mation, serosal invasion, portal vein invasion, venous invasion, bile
duct invasion and intrahepatic metastasis [29]. Other factors stud-
ied included patient age, gender, hepatitis virus, serum levels of
alpha-fetoprotein (AFP) and protein induced by vitamin K absence
(PIVKA) II, number of tumors, size (maximum diameter), paren-
chyma fibrosis (z0, no or mild fibrosis; z1, moderate fibrosis or
chronic hepatitis; z2, severe fibrosis or cirrhosis), and primary or
recurrence status. These variables were stratified as listed in
Tables 2 and 3.

DPD radiometric enzymatic assay

The DPD enzymatic assay was based on the method described by
Takechi et al. [45]. Briefly, tumor tissues were sonicated in three
volumes of homogenization buffer. Each homogenate was centri-
fuged at 105,000 g for 1 h at 4°C, and the supernatant (cytosol
fraction) was collected. After applying 100 pl of the sample to a gel
column (MicroSpin G-25 column, Pharmacia Biotech, USA), it
was centrifuged at 3000 g for 2 min. The enzyme reaction mixture
contained 10 mM potassium phosphate buffer (pH 8.0), 0.5 mM
EDTA, 0.5mM B-ME, 2mM DTT, 5mM MgCl, 20 uM
[6-'*C]5-FU, 100 pM NADPH and 25 pl of the cytosol fraction in
a final volume of 50 pl. The mixture was incubated at 37°C for
either 10 or 30 min. The DPD activity was determined by mea-
suring the sum of the dihydrofluorouracil and 2-fluoro-f-alanine
products formed from the [6-'*C]5-FU. Aliquots (5 pl) of the
supernatant were applied to thin layered chromatography (TLC)
plates (silica gel 60 F254; Merck, Darmstadt, Germany), which
were developed with a mixture of ethanol and 1 M ammonium
acetate (5:1, v/v). Each product was visualized and quantified using
an image analyzer (BAS-2000; Fujix, Tokyo, Japan).

TS FAUMP ligand-binding assay

The tumors were homogenized with three volumes of 200 mM Tris-
HCI (pH 8.0) containing 20 mM -ME, 100 mM NaF, and 15 mM
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Table 2 Association between

DPD/TS activities and Variable DPD activity TS activity
pathological features No. of Mean +SD No. of Mean +SD
cases (n=28) (pmol/mg/min protein) cases (n=30) (pmol/mg/protein)

Differentiation

Well 11 356.7+178.4 12 0.036+£0.020

Moderately 12 237.0+283.3 12 0.034+0.034

Poorly 5 266.8+164.8 6 0.074£0.100
Growth pattern

Expansive 19 251.9+213.1 20 0.048 £0.062

Infiltrative 9 368.5+248.6 20 0.032+0.010
Capsule formation

Positive 24 257.1+£209.3 25 0.044 +0.056

Negative 4 483.24+265.6 5 0.034+£0.004
Capsule invasion

Positive 16 281.44+213.9 17 0.035+0.030

Negative 9 213.7+£192.0 9 0.062+0.083
Septum formation

Positive 18 300.1+£215.3 20 0.036 +0.029

Negative 10 270.1£258.4 10 0.057+0.079
Serosa invasion

Positive 7 368.8 £282.6 7 0.048 +£0.057

Negative 21 262.94+206.9 23 0.025+0.014
Portal invasion

Positive 12 344.6 £284.2 13 0.027+£0.012

Negative 16 247.9+171.7 17 0.055+0.065
Venous invasion

Positive 5 406.0£150.6 6 0.027 £0.004

Negative 23 264.0+£197.5 24 0.047 £0.056
Bile duct invasion

Positive 3 214.9+264.0 3 0.020+0.003

Negative 25 298.34+227.0 27 0.045+0.053
Intrahepatic metastasis

Positive 15 241.8+238.4 17 0.045+0.062

Negative 13 344.3+209.3 13 0.040 +£0.033
Primary/recurrent

Primary 23 280.9 £237.0 25 0.046 +£0.055

Recurrent 5 328.4+193.4 5 0.028 +0.003

CMP, and were centrifuged at 105,000 g for 60 min. The resul-
tant supernatant was used for the determination of TS
activity according to the method of Spears et al. [42] using
[6-°’H]FAUMP as a substrate. Both the total TS and the free TS
were quantified.

Statistical analysis

The data are expressed as means=+SD. The significance of differ-
ences between the groups was tested using the unpaired Mann-
Whitney U-test or Student’s unpaired ¢-test. P values less than 0.05
were considered to be statistically significant for all tests.

Results

Of the 33 samples, 3 were excluded from the analysis
because the final pathological diagnosis was not HCC.
As a result, 30 samples of HCC and 33 noncancerous
liver tissue samples were studied (Table 1).

DPD activity

Despite the standardized method of sample collection,
the DPD activity of the HCC and noncancerous liver
parenchyma exhibited wide variability. It was measur-
able in all but one sample, and varied over a range of
nearly 50-fold. There was a significant difference in DPD
activity between the HCC and noncancerous liver
parenchyma samples (P <0.05). The mean+SD DPD
activity in the HCC samples was 310.7 +235.1 pmol/min
per milligram protein, ranging from 43.8 to
2228.0 pmol/min, whereas that for the noncancerous
liver parenchyma was 532.7+198.6 pmol/min, ranging
from 57.3 to 1154.6 pmol/min (Fig. 1). Moreover, for
every clinical feature studied, the DPD activity in the
HCC was less than in the corresponding noncancerous
liver parenchyma.

With respect to the tumor tissues, the DPD activity
exhibited a significant difference in relation to the
number of tumors. The single-nodule group showed a
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Table 3 Association between

DPD/TS activities and clinical Variable DPD activity (mean=+SD, TS activity (mean + SD,
features pmol/mg/min protein) pmol/mg/protein)
HCC Non-HCC HCC Non-HCC
(n=28) (n=33) (n=30) (n=33)
Virus marker (HBV Ag/HCV Ab)
+ /- 368.2+280.8 602.0+69.6 0.031+£0.010  0.031+0.017
-/+ 233.8+179.3 515.1£230.6  0.052+£0.064  0.069+0.096
+/+ 278.9 199.5 0.033 0.019
—/- 401.4+3234 563.1+155.0  0.025+£0.013  0.026+0.008
Age (years)
<60 261.7+£169.9 557.9+99.4 0.039+£0.020  0.024+0.008
60-69 347.4+264.0 583.7+£230.7% 0.034+0.030  0.053+0.064
>70 162.3+£99.8  402.3+169.8* 0.066+0.095  0.081+0.123*
Gender
Male 280.2+£223.8 537.0+205.4  0.048+£0.056  0.056+0.083
Female 322.84+258.6 513.1+180.4  0.022+0.010  0.032+0.016
AFP (ng/ml)
<200 274.5+232.2 528.5+206.6  0.046+0.056  0.058 +0.084
>200 357.7+212.4 548.3+179.7  0.028+0.010  0.027=+0.011
PIVKA-II (mAU/ml)
<40 292.6+136.7 489.5+165.8  0.043+£0.014  0.050+0.081
>40 280.5+£262.7 557.1+£2152  0.042+0.061 0.051£0.076
Liver damage
I 320.0+234.5 572.7+172.0  0.035+0.026  0.033+0.019
11 177.1+£169.7 352.8+£226.5% 0.074+£0.102  0.137+£0.154*
No. of nodules
1 365.64+239.2 573441345  0.038+£0.030  0.043£0.060
2 115.6+£96.2*% 499.5+4254  0.030+£0.023  0.036+0.028
>3 239.2+199.1 4759+134.8  0.058+0.083  0.075+0.110
Diameter (cm)
<5 244.5+161.5 519.2+143.1 0.055+£0.062  0.068 +0.096
>5 373.34+291.8 504.6+202.8  0.026+0.014* 0.029+0.016
z-factor
0 442.9+276.9 573.2+144.1 0.028+£0.015  0.022+0.007
1 265.2+£217.0 530.3+£2059  0.050+£0.062  0.057+0.079*
2 229.8+192.5 493.4+249.8  0.032+0.021 0.068 £0.103
TNM stage
I 3643+262  575.84+94.0 0.027£0.001 0.025£0.010
11 366.84+262.4 545.0+172.6  0.058+0.073  0.079+0.114
. 111 201.9+147.3 503.9+291.3  0.034+£0.020  0.038+0.027
P <0.05, vs the first value of IVA 196.9+259.4 513.5+136.2  0.026=0.010  0.035+0.013

that group of values

DPD activity of 365.6+239.2 pmol/min per milligram
protein, whereas the activity in the multiple-nodule
group was 115.6£96.2 pmol/min (P=0.037). Other
pathological variables did not show a definite correla-
tion (Table 2). In TNM stages I and II, the DPD activity
was 366.5+243.0 pmol/min, whereas in stages III and
IVA, the activity was 200.4+176.9 pmol/min. These

differences were not statistically significant, but
suggested that the advanced tumors had lower DPD
activity.

On the other hand, the DPD activity in the noncan-
cerous liver parenchyma varied in relation to the degree
of liver damage, as defined by the Liver Cancer Study
Group of Japan [29]. Liver damage was classified into
three groups A, B and C, which are nearly identical to
the Child-Pugh classification groups. The DPD activity

in liver damage class A (572.7+172.0 pmol/min per
milligram protein) was significantly higher than that in
class B (352.8£226.5 pmol/min per milligram protein;
P=0.012). The histological liver damage was classified
into three groups: z0, z1 and z2. The DPD activity de-
creased as the z-factor increased, although no statistical
significance was observed (z0, 573.2+144.1; zl1,
530.3£205.9; z2, 493.44+249.8 pmol/min per milligram
protein). In addition, the liver parenchyma samples from
patients positive for hepatitis B virus surface antigen
(HBs Ag) tended to show higher DPD activity than
those from patients positive for hepatitis C virus anti-
body (HCV Ab): HBs Ag-positive, 602.0+69.6; HCV
Ab-positive, 515.1+230.6 pmol/min per milligram pro-
tein). Age was also a significant variable. The DPD
activities in the age groups 50-59, 60—69 and 70-79 years
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Fig. 1 DPD activities in the HCCs and the corresponding
noncancerous liver samples. Values are means + SD for all samples.
The significances of the differences between the groups were
determined using the Mann-Whitney U-test
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Fig. 2 TS activities in the HCCs and the corresponding noncan-
cerous liver samples. Values are means +SD for all samples. The
significances of the differences between the groups were determined
using the Mann-Whitney U-test (V.S not significant)

were 261.7+169.9, 347.4+264.0 and 162.3 £99.8 pmol/
min per milligram protein, respectively. There were sta-
tistically significant differences in DPD activities be-
tween the 70-79-year and the 50-59-year age groups,
and between the 70-79-year and the 60-69-year age
groups, with P values of 0.043 and 0.033, respectively.
The various clinicopathological variables and the cor-
responding DPD activities are shown in Table 3.

Of the 30 HCC:s studied, 10 exhibited a DPD activity
of less than 100 pmol/min per milligram protein, which
is comparable to the enzyme activity of 5-FU-responsive
tumors.

TS activity

The TS activity was 0.043 +0.049 pmol/mg protein in
the HCC, and 0.052+0.075 pmol/mg protein in the
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Fig. 3 Distribution of the HCC samples in relation to their DPD/
TS activities. The straight lines show the average DPD and TS
activities in the HCCs. One-third of the investigated HCCs had low
DPD activity nearly equal to that of other cancers considered to be
sensitive to 5-FU
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noncancerous liver parenchyma (Fig. 2). Among the
various clinicopathological features of HCC, only the
tumor size was significantly related to TS activity. Tu-
mors smaller than 5 cm in diameter had significantly
higher TS activity (0.055=+0.062 pmol/mg protein) than
tumors over 5 cm in diameter (0.026+0.014 pmol/mg
protein). None of the other pathological variables in
HCCs showed a definite correlation with the TS activity.
However, the TS activity tended to be lower when the
tumor showed pathological invasive potential: infiltra-
tive growth, 0.032+0.010 pmol/mg protein; expansive
growth, 0.048 +0.062 pmol/mg protein; capsule inva-
sion (+), 0.035+0.030 pmol/mg protein; capsule inva-
sion (—), 0.062+0.083 pmol/mg protein; portal vein
invasion (+), 0.027+£0.012 pmol/mg protein; portal
vein invasion (—), 0.055%0.065 pmol/mg protein; he-
patic vein invasion (+), 0.027 +0.004 pmol/mg protein;
hepatic vein invasion (-), 0.047+0.056 pmol/mg pro-
tein; bile duct invasion (+), 0.020+0.003 pmol/mg
protein; bile duct invasion (—), 0.045+0.053 pmol/mg
protein (see Table 2).

On the other hand, the TS activity in the noncancer-
ous liver parenchyma varied in relation to the liver
damage. The TS activity with liver damage class A
(0.033+£0.019 pmol/mg protein) was significantly lower
than with liver damage class B (0.137£0.153 pmol/mg
protein; P=0.028). The z-factor also showed a significant
relationship  (z0, 0.022+0.007 pmol/mg  protein;
z1, 0.057%0.079 pmol/mg protein; z2, 0.068 £0.103
pmol/mg protein; P=0.045). Although not significant,
samples from HBs Ag-positive patients tended to show
lower TS activity than those from HCV Ab-positive
patients in the liver parenchyma (HBs Ag-positive,
0.031+0.017 pmol/mg protein, HCV Ab-positive,
0.069 £ 0.096 pmol/mg protein). Age also turned out to
be a significant variable for TS activity. The TS activities
were 0.081£0.123 pmol/mg protein and 0.024 £0.008
pmol/mg protein in the 70-79-year and 50-60-year age
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groups, respectively (P=0.043), and 0.053 £0.064 pmol/
mg protein in the 60-69-year age group. The other
variables and TS activities are summarized in Table 3.

Every HCC sample with a DPD activity of less than
100 pmol/min per milligram protein exhibited a lower
than average TS activity (0.043 pmol/mg protein;
Fig. 3).

Discussion

Quantitating DPD and TS activity in HCC is of clinical
interest because, although 5-FU may not be the first
treatment of choice in HCC, some patients respond
quite well to 5-FU-based chemotherapy. Moreover,
since the liver is the tissue with the highest DPD content,
along with peripheral blood mononuclear cells [12, 18,
30, 31, 32], the degradation rate of 5-FU should decrease
when the parenchyma is injured. It is therefore relevant
to understand the degradation ability of 5-FU when
chronic liver disease coexists.

Our study is the first in which the activities of both
DPD and TS in the same specimens of HCC and cor-
responding liver parenchyma have been determined. By
comparing the enzyme activities with various clinico-
pathological variables, we aimed to find suggestive
associations between these variables and the enzyme
levels. Furthermore, we intended to clarify whether
HCC patients with liver damage would benefit from the
administration of 5-FU-based chemotherapy and whe-
ther the side effects could be avoided. Patients with DPD
deficiency, which leads to severe life-threatening toxicity,
have recently been reported [7, 16, 22, 46].

The methods used for the determination of the en-
zyme activities studied here are established techniques.
Enzyme activity may be affected by preoperative che-
motherapy, and hence all patients in this study re-
ceived no chemotherapy prior to their surgery.
Recently, the development of sensitive, reverse tran-
scription polymerase chain reaction (RT-PCR) meth-
ods has permitted the quantification of messenger
RNA (mRNA) expression in small tumor biopsy
samples, and previous reports have indicated the sig-
nificance of both DPD and TS mRNA quantification
[4, 20, 24, 26, 27, 28, 35]. However, mRNA levels do
not represent the actual activity of the enzyme. Al-
though a correlation between mRNA levels and en-
zyme activity has been demonstrated in several studies,
we would like to emphasize that the quantification of
the active DPD and TS enzymes may provide a clearer
indication for evaluating the efficacy of 5-FU-based
chemotherapy. However, the biological characteristics
of cells within cancer tissue are not always homoge-
neous in their spatial distribution. The method used
here as well as RT-PCR should overcome this impor-
tant issue to obtain reliable results. To resolve this
problem, the cancer tissues were collected from various
lesions when a heterogeneous composition was evident
macroscopically.

Although the results of this study were based on a
relatively small number of patients and are thus pre-
liminary in nature, some statistically significant corre-
lations were observed. However, they tended to lack
definitive power due to the large dispersion of paired
values. Nonetheless, some are thought-provoking and
raise several interesting points.

Our results are in good agreement with those previ-
ously reported by Jiang et al. [21] and Guimbaud et al.
[15], showing lower levels of DPD activity in HCC
compared to corresponding liver parenchyma. This is
consistent with reports of studies involving head and
neck cancers [8, 13] and colorectal cancers [19, 33],
indicating that DPD activity is lower in the tumors than
in the surrounding normal tissue. Interestingly, Ikeguchi
et al. observed opposite results, with higher DPD
activity in HCC than in liver parenchyma [19]. Since the
patient population and methodology used in the study
by Ikeguchi et al. were similar, further studies are re-
quired to explain this discrepancy.

Our observation of higher DPD activities in the
HCCs (310.7+235.1 pmol/min per milligram protein)
than in so-called 5-FU-sensitive tumors such as head
and neck and colorectal cancers may explain the low
response rate to 5-FU-based chemotherapy in HCC
patients. Nevertheless, in the present study, the samples
from10 out of 30 patients exhibited a DPD activity of
less than 100 pmol/min per milligram protein, which is
comparable to the enzyme activity of 5-FU-responsive
tumors. Moreover, these samples exhibited lower than
average TS activity. It is, therefore, conceivable that
some selected HCC patients would be good candidates
for 5-FU-based chemotherapy (Fig. 3). We have not had
a chance to evaluate 5-FU efficacy in those HCC pa-
tients whose DPD and TS activities have been quanti-
fied. Nevertheless, we are now trying to increase the size
of the patient study group to determine whether 5-FU-
based chemotherapy would be beneficial in certain HCC
patients.

Although DPD activity in normal liver has been
previously reported by Chazal et al. [4] and Lu et al. [31,
32], we are the first to report evidence indicating that the
DPD activity gradually decreases as liver function
deteriorates, as evidenced by the correlation between
DPD activity and the liver damage score and z-factor.
This observation seems reasonable, because enzyme
activity is presumably related to liver function.
Accordingly, the efficiency of 5-FU chemotherapy may
be affected by liver damage. A decrease in the degra-
dation of 5-FU would increase the serum concentration
of 5-FU to levels greater than expected. Therefore, we
should recognize that toxic side effects may be more
likely to appear in those patients with chronic liver
disease. Other covariables influencing 5-FU clearance
have been reported by Etienne et al. [9].

Our findings showed that invasive, aggressive HCCs
tended to express lower TS activity than noninvasive
HCCs. This suggests that the cell cycle in these aggres-
sive HCCs turns over rapidly, which results in very fast



TS consumption owing to rapid DNA replication, thus
resulting in low TS activity. However, this observation is
not in accordance with that of Cummins et al., who
found that TS activity is increased in rapidly growing
hepatomas in the rat and cell lines [6]. Our study,
however, is the first in which TS activity has been
investigated in human liver cancers, and this activity
may differ from that in rat hepatomas and cell lines.

Van der Wilt et al. [47], Spears et al. [43] and Larsson
et al. [25] have previously reported the TS activity in
normal liver. However, the present study is the first in
which the TS activity in injured liver has been investi-
gated. It is therefore difficult to compare the results of
the present study with those of previous studies. None-
theless, we obtained interesting and suggestive evidence.
As the liver damage and z-factor increased, the TS
activity rose, with the difference being significant. The
precise mechanism of this increase is still unknown, but
we can assume that the higher TS activity was associated
with injured liver, in which DNA synthase activity is
probably enhanced.

In conclusion, HCCs showed relatively low DPD
activity compared to the surrounding noncancerous liver
parenchyma. Furthermore, HCCs with invasive char-
acteristics showed lower TS activity than less-invasive
HCCs. These are, in part, favorable findings for 5-FU-
based chemotherapy. At the same time, the present
study made clear that the DPD activity in HCCs is
typically higher than that in tumors known to be 5-FU-
sensitive, which may be a reason for the 5-FU resistance
seen in many HCCs. However, we showed that HCCs
have a wide range of DPD and TS activities, which
implies the necessity for individual evaluation in the
assessment of drug sensitivity. Furthermore, the present
study clearly showed that the hepatic parenchyma of
injured liver exhibited lower DPD activity than that of
undamaged tissue. Low DPD activity in the liver
parenchyma suggests a greater chance of toxic side
effects, so the dosage of 5-FU may need to be limited in
patients with liver injury much more than in patients
without.
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